An Algebraic Conjugacy
نویسنده
چکیده
Let T be an invertible, ergodic, measure-preserving transformation of a separable, nonatomic probability space (X, (B, ra), and let U be the induced unitary operator acting in L(X, (B, m). Let Ct(T) be the Banach algebra generated by the multiplication algebra and the nonnegative powers of U. It is shown that, if 5 is another such transformation, then 5 and T are conjugate if, and only if, a(5) and ®(T) are unitarily equivalent. Thus, the conjugacy problem for ergodic transformations is equivalent to multiplicity theory for the algebras Cfc(r). While much remains to be learned about these operator algebras, similar ones have been studied in [5] and [l]. Finally, &(T) can be realized concretely as an algebra of operator-valued analytic functions in the unit disc. In §2 we describe generalizations of the C*-algebra constructed in §1 ; it turns out that pathology appears as soon as the group involved fails to be amenable, and only in that case. Full details and further developments will appear elsewhere.
منابع مشابه
Groups whose set of vanishing elements is exactly a conjugacy class
Let $G$ be a finite group. We say that an element $g$ in $G$ is a vanishing element if there exists some irreducible character $chi$ of $G$ such that $chi(g)=0$. In this paper, we classify groups whose set of vanishing elements is exactly a conjugacy class.
متن کاملFINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES
Let G be a finite group and Z(G) be the center of G. For a subset A of G, we define kG(A), the number of conjugacy classes of G that intersect A non-trivially. In this paper, we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them.
متن کاملA NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS
The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.
متن کاملCOMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS
Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...
متن کاملFrom Conjugacy Classes in the Weyl Group to Unipotent Classes
Let G be a connected reductive algebraic group over an algebraic closed field. We define a (surjective) map from the set of conjugacy classes in the Weyl group to the set of unipotent classes in G.
متن کاملProducts of Conjugacy Classes in Finite and Algebraic Simple Groups
We prove the Arad–Herzog conjecture for various families of finite simple groups — if A and B are nontrivial conjugacy classes, then AB is not a conjugacy class. We also prove that if G is a finite simple group of Lie type and A and B are nontrivial conjugacy classes, either both semisimple or both unipotent, then AB is not a conjugacy class. We also prove a strong version of the Arad–Herzog co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007