An Algebraic Conjugacy

نویسنده

  • WILLIAM B. ARVESON
چکیده

Let T be an invertible, ergodic, measure-preserving transformation of a separable, nonatomic probability space (X, (B, ra), and let U be the induced unitary operator acting in L(X, (B, m). Let Ct(T) be the Banach algebra generated by the multiplication algebra and the nonnegative powers of U. It is shown that, if 5 is another such transformation, then 5 and T are conjugate if, and only if, a(5) and ®(T) are unitarily equivalent. Thus, the conjugacy problem for ergodic transformations is equivalent to multiplicity theory for the algebras Cfc(r). While much remains to be learned about these operator algebras, similar ones have been studied in [5] and [l]. Finally, &(T) can be realized concretely as an algebra of operator-valued analytic functions in the unit disc. In §2 we describe generalizations of the C*-algebra constructed in §1 ; it turns out that pathology appears as soon as the group involved fails to be amenable, and only in that case. Full details and further developments will appear elsewhere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups whose set of vanishing elements is exactly a conjugacy class

‎Let $G$ be a finite group‎. ‎We say that an element $g$ in $G$ is a vanishing element if there exists some irreducible character $chi$ of $G$ such that $chi(g)=0$‎. ‎In this paper‎, ‎we classify groups whose set of vanishing elements is exactly a conjugacy class‎.

متن کامل

FINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES

‎Let G be a finite group and Z(G) be the center of G‎. ‎For a subset A of G‎, ‎we define kG(A)‎, ‎the number of conjugacy classes of G that intersect A non-trivially‎. ‎In this paper‎, ‎we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them‎.

متن کامل

A NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS

The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.

متن کامل

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...

متن کامل

From Conjugacy Classes in the Weyl Group to Unipotent Classes

Let G be a connected reductive algebraic group over an algebraic closed field. We define a (surjective) map from the set of conjugacy classes in the Weyl group to the set of unipotent classes in G.

متن کامل

Products of Conjugacy Classes in Finite and Algebraic Simple Groups

We prove the Arad–Herzog conjecture for various families of finite simple groups — if A and B are nontrivial conjugacy classes, then AB is not a conjugacy class. We also prove that if G is a finite simple group of Lie type and A and B are nontrivial conjugacy classes, either both semisimple or both unipotent, then AB is not a conjugacy class. We also prove a strong version of the Arad–Herzog co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007